The Developmental and Stem Cell Biology PhD program builds upon the outstanding strengths of basic and translational research at UCSF. It provides training in four overlapping and interrelated thematic areas: stem cells and cell differentiation, organogenesis and tissue regeneration, pattern formation and morphogenesis, and evolutionary developmental biology. The DSCB Program offers an integrated and multidisciplinary educational opportunity for graduate students pursuing careers in these rapidly expanding fields.

Research in the field of developmental and stem cell biology has multiple entry points for participation. Applicants committed to the study of developmental and stem cell biology should apply directly to the DSCB PhD program. Students who want to explore broader approaches to the field should consider applying to the TETRAD [1] or Biomedical Sciences (BMS) [2] graduate programs. TETRAD has a developmental biology focus within their PhD program and a thematic area within BMS is developmental and stem cell biology.

faculty

The DSCB program includes more than sixty faculty members from various clinical and basic science departments with a wide range of interests. Most DSCB faculty have ongoing laboratory projects that span multiple thematic areas.

DSCB coordinates its activities with a variety of cross-campus entities including the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research [3], the UCSF Diabetes Center [4], and the Gladstone Institutes [5].

sub-disciplines

- stem cells and cell differentiation
- organogenesis and tissue regeneration
- pattern formation and morphogenesis
- evolutionary developmental biology

The Developmental and Stem Cell Biology program office is located at the Parnassus campus in the Eli and Edyth Broad Center of Regeneration Medicine and Stem Cell Research. Visit the program website [6] for more information.
Source URL: https://graduate.ucsf.edu/programs/dscb

Links:
[1] https://graduate.ucsf.edu/programs/tetrad
[2] https://graduate.ucsf.edu/programs/bms